a note on the zero divisor graph of a lattice
نویسندگان
چکیده
abstract. let $l$ be a lattice with the least element $0$. an element $xin l$ is a zero divisor if $xwedge y=0$ for some $yin l^*=lsetminus left{0right}$. the set of all zero divisors is denoted by $z(l)$. we associate a simple graph $gamma(l)$ to $l$ with vertex set $z(l)^*=z(l)setminus left{0right}$, the set of non-zero zero divisors of $l$ and distinct $x,yin z(l)^*$ are adjacent if and only if $xwedge y=0$. in this paper, we obtain certain properties and diameter and girth of the zero divisor graph $gamma(l)$. also we find a dominating set and the domination number of the zero divisor graph $gamma(l)$
منابع مشابه
THE ZERO-DIVISOR GRAPH OF A MODULE
Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, sayΓ(RM), such that when M=R, Γ(RM) coincide with the zero-divisor graph of R. Many well-known results by D.F. Anderson and P.S. Livingston have been generalized for Γ(RM). We Will show that Γ(RM) is connected withdiam Γ(RM)≤ 3 and if Γ(RM) contains a cycle, then Γ(RM)≤4. We will also show tha...
متن کاملA Note on the Zero Divisor Graph of a Lattice T. Tamizh Chelvam∗ and S. Nithya
Let L be a lattice with the least element 0. An element x ∈ L is a zero divisor if x∧ y = 0 for some y ∈ L∗ = L \ {0}. The set of all zero divisors is denoted by Z(L). We associate a simple graph Γ(L) to L with vertex set Z(L)∗ = Z(L) \ {0}, the set of non-zero zero divisors of L and distinct x, y ∈ Z(L)∗ are adjacent if and only if x ∧ y = 0. In this paper, we obtain certain properties and dia...
متن کاملthe zero-divisor graph of a module
let $r$ be a commutative ring with identity and $m$ an $r$-module. in this paper, we associate a graph to $m$, say ${gamma}({}_{r}m)$, such that when $m=r$, ${gamma}({}_{r}m)$ coincide with the zero-divisor graph of $r$. many well-known results by d.f. anderson and p.s. livingston have been generalized for ${gamma}({}_{r}m)$. we show that ${gamma}({}_{r}m)$ is connected with ${diam}({gamma}({}_...
متن کاملA Note on Zero Divisor Graph Over Rings
In this article we discuss the graphs of the sets of zero-divisors of a ring. Now let R be a ring. Let G be a graph with elements of R as vertices such that two non-zero elements a, b ∈ R are adjacent if ab = ba = 0. We examine such a graph and try to find out when such a graph is planar and when is it complete etc. Mathematics Subject Classification: Primary 16-xx, 05-xx; Secondary 05C50
متن کاملOn the Zero-divisor Cayley Graph of a Finite Commutative Ring
Let R be a fnite commutative ring and N(R) be the set of non unit elements of R. The non unit graph of R, denoted by Gamma(R), is the graph obtained by setting all the elements of N(R) to be the vertices and defning distinct vertices x and y to be adjacent if and only if x - yin N(R). In this paper, the basic properties of Gamma(R) are investigated and some characterization results regarding co...
متن کاملProperties of extended ideal based zero divisor graph of a commutative ring
This paper deals with some results concerning the notion of extended ideal based zero divisor graph $overline Gamma_I(R)$ for an ideal $I$ of a commutative ring $R$ and characterize its bipartite graph. Also, we study the properties of an annihilator of $overline Gamma_I(R)$.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
transactions on combinatoricsناشر: university of isfahan
ISSN 2251-8657
دوره 3
شماره 3 2014
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023